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Motivation 

In 2017 State Archives NSW’s Digital Archives team began investigating the 

application of machine learning to records management. The first deliverable of 

this project was a research paper published on the FutureProof blog that 

explored the state of art (what the technology is capable of) and state of play 

(how it is being used in records management). One of the key findings of this 

report was that, although machine learning has potential to improve the 

classification and disposal of digital records, there has been very little adoption 

of the technology, particularly in New South Wales. In order to promote uptake 

we committed to a series of internal and external pilots to further explore and 

showcase machine learning for records management. 

This case study documents an internal pilot that the Digital Archives team 

conducted in November and December 2017. The goal of this pilot was to apply 

off-the-shelf machine learning software to the problem of classifying a corpus of 

unstructured data against a retention and disposal authority. The results of this 

pilot were shared at the December 2017 Records Managers Forum. 

 

Preliminary set-up 

One of the constraints of the internal pilot was that we had limited resources: no 

budget and (very fortunately) an ICT graduate placement that had recent 

university experience in machine learning. So in identifying suitable technologies 

to use in the pilot we looked for low cost, off-the-shelf solutions. We quickly 

settled on scikit-learn: a free and open source machine-learning library for the 

Python programming language. This is a simple and accessible set of tools that 

includes pre-built classifiers and algorithms. It was fortunate that we had a 

machine with a big CPU, copious RAM, and SSDs to run the model on. 

 

Method 

Objective 

The goal of the internal pilot was to test machine learning algorithms on a 

corpus of records that we had previously manually sentenced against a disposal 

https://futureproof.records.nsw.gov.au/machine-learning-and-records-management/
https://en.wikipedia.org/wiki/Scikit-learn#Overview


authority. With what level of accuracy could we automatically match the corpus 

against the same disposal classes? 

Corpus 

The records that were chosen for the internal pilot had been transferred to the 

Digital State Archive in 2016 by a central government department. This corpus 

was unusual in that it contained a complete corporate folder structure extracted 

from Objective. The full corpus comprises 30 GB of data, in 7,561 folders, 

containing 42,653 files. At the point of transfer, no disposal rules had been 

applied to the files (ordinarily we require that only records required as State 

Archives are transferred to our custody). In a joint effort with the department 

we manually sentenced the corpus (at a folder level) against the General 

Retention and Disposal Authority Administrative Records (GA28). The result of 

this manual appraisal of the folders was a total of 12,369 files required as State 

archives. 

The following options were considered for the internal pilot: 

• to apply all “Required as State archive” classes from GA28 (75 in total). 

Folders that didn’t fit these classes would be unclassified 

• to apply the subset of “Required as State archive” classes that had been 

manually identified in the corpus (23 in total). Folders that didn’t fit 

these classes would be excluded from the corpus 

• to apply all of the GA28 classes (686 in total). To do a complete test of all 

folders 

• to pre-treat the corpus by removing all folders which would be covered by 

NAP (Normal Administrative Practice) E.g. duplicates or non-official/ 

private records 

The decision was made to pre-treat the corpus and remove all folders which 

would be covered by NAP (Normal Administrative Procedures) and to take the 

subset of 12,369 files that were identified as being “Required as State archives” 

which used only 23 classes of GA 28.  Further preparation of the subset involved 

assigning the classification from the folder level at the level of the individual 

files. This was done manually. 

Summary table 

Break down of the corpus: 

 Data set Number of file contained 

Complete  corpus 42653 

NAP (Normal Administrative Procedures) 25643 

Corporate file plan 17307 

Required as State Archives 12369 

Required as State Archives and formats that could be text extracted 

– i.e. the usable sample set 
8784 



  

Text Extraction and Classification steps 

1.   Text Extraction 

To be usable, the documents chosen for analysis need to be easily text 

extractable. This was to ensure performance and ease of conducting further text 

manipulation later in the project. Only 8,784 files of the 12,369 files which were 

classified as State archives were selected for use because their file types allowed 

simple text extraction. 

After sorting the sample set, a Python program using various libraries was 

developed to extract text from the following file types: PDF, DOCX and DOC 

files. 

The text that was extracted from documents was then placed within a single .csv 

file. The .csv file was divided into three columns: the file name (unique 

identifier), classification (GA 28 class), and lastly the text extract. 

2. Data cleaning 

We took a very basic approach to data cleansing. The following concepts were 

utilised: remove document formatting, remove stop words, remove documents 

that are not required, and convert all letters to lower case.  

3. Text Vectorisation and Feature Extraction 

Text vectorisation is the process of turning text into numerical feature vectors. A 

feature is unique quality that is being observed within a dataset and using these 

qualities we form an n-dimensional vector, which is used to represent each 

document. Text Vectorisation is necessary because machine learning and deep 

learning algorithms can’t work directly with text.  It is essential to convert text 

into numerical values that the machine learning algorithm can understand and 

work with. 

The methodology we used for text Vectorisation is termed the Bag-of-Words 

approach. This is a simple model that disregards the placements of words within 

documents but focuses on the frequency instead. This is done by considering 

each unique word as a feature. We then use this approach to represent any 

document as a representation of a fixed length of unique words known as the 

vocabulary of features. Each position for the unique word is filled by the count of 

the particular word appearing in that document, thus creating a document-term 

matrix which is a mathematical matrix that describes the frequency of terms 

that occur in a collection of documents 

Example[1] 

Suppose we have the vocabulary that includes the following: 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://futureproof.records.nsw.gov.au/case-study-internal-pilot-machine-learning-and-records-management/#_ftn2


Brown, dog, fox, jumped, lazy, over, quick, the, zebra 

Then we are given an input document: 

the quick brown fox jumped over the lazy dog 

  

 Brown Dog Fox Jumped Lazy Over Quick The Zebra 

Document 1 1 1 1 1 1 1 1 2 0 

  

This document term matrix shown above is the numerical representation of the 

given input document. 

4. Term Frequency Inverse Document Frequency (TF-IDF) 

Having a document term matrix that uses counts is a good representation but a 

basic one. One of the biggest issues is that reoccurring words like “are” will have 

large count values that are not meaningful to the vector representations of 

documents. TF-IDF is an alternate method of calculating document feature 

values for a vector representation. TF-IDF works by calculating the term 

frequency (frequency of a particular word within a document) and then 

multiplying it by the Inverse document frequency (this helps decrease the rating 

of words that appear too frequently in the document set and favours 

unique/unusual words). 

Therefore, once we had created a vocabulary and built the document term 

matrix (DTM) we applied the TF-IDF approach onto the DTM to increase the 

weighting of words that are unique to the documents themselves. 

Example – Application on a Document-Term Matrix 

Let’s say we have a document-term matrix with two documents in it and we 

want to put TF-IDF weighting on it. 

  

 Brown Dog Fox Jumped Lazy Over Quick The Zebra 

Doc 1 1 1 1 1 1 1 1 2 0 

Doc 2 0 1 0 1 1 1 0 2 1 

  

TF-IDF = Term Frequency * Inverse Document Frequency 

Term Frequency = the number of times the word appears within a document. 



Inverse Document Frequency = Log (Total number of documents / Number of 

documents having the particular word) 

  

  
Term Frequency Inverse Document 

Frequency 

TF-IDF 

Doc 1 Doc 2 Doc 1 Doc 2 

Brown 1 0 Log(2/1) = Log(2) Log(2) 0 

Dog 1 1 Log(2/2) = Log(0) = 0 0 0 

Fox 1 0 Log(2/1) = Log(2) Log(2) 0 

Jumped 1 1 Log(2/2) = Log(0) = 0 0 0 

Lazy 1 1 Log(2/2) = Log(0) = 0 0 0 

Over 1 1 Log(2/2) = Log(0) = 0 0 0 

Quick 1 0 Log(2/1) = Log(2) Log(2) 0 

The 2 2 Log(2/2) = Log(0) = 0 0 0 

Zebra 0 1 Log(2/1) = Log(2) 0 Log(2) 

  

After applying TF-IDF weighting it is clearly visible that words that are unique 

and provide greater meaning having higher weightings compared to those that 

don’t.  

5. Training and Test Split 

The pilot used the standard ratio 75% training data to 25% testing data in its 

approach. To begin with we took 75% of the pre-classified “Required as State 

archive” content and used this data to train the algorithm to build the model. 

Once the training had been completed the same algorithm and model was used 

to process the 25% test set. This allows us to assess how accurately the model 

performs and determine a percentage of successful prediction. Our results are 

shown below. 

6. Machine learning algorithm overview 

We used two machine learning algorithms to build our model: multinomial Naïve 

Bayes and the multi-layer perceptron. These algorithms were chosen as they are 

widely used for this type of application 

• Multinomial Naïve Bayes 

Multinomial Naïve Bayes is part of a family of simplistic probability based 

classifiers. The classifier is based on the Bayes theorem that involves the use of 

strong independent assumptions between features. 

• Multi-Layer Perceptron 

Multi-layer perceptron is a supervised learning algorithm that can learn as a 

non-linear function approximator for either classification or regression. 

  



Statistical Analysis 

To demonstrate the results of the internal pilot we have created a confusion 

matrix and summary result tables to display the comparison of the two 

algorithms used. 

Confusion Matrix 

A confusion matrix is a table that summarizes how successfully a classification 

model’s predictions were i.e. the correlation between the actual label and the 

model’s classification. One axis of a confusion matrix is the label that the model 

predicted, and the other axis is the actual label. The size of the table on both 

axes represents the number of classes. Note: The confusion matrices presented 

below are representative but aren’t the exact ones used to determine the 

results. 

Confusion matrices contain sufficient information to calculate a variety of 

performance metrics, including precision and recall. Precision identifies the 

frequency with which a model was correct when predicting the positive 

class and recall answers the following question: out of all the possible positive 

labels, how many did the model correctly identify? 

Multinomial Naïve Bayes 

 
Pre Data Cleaning Cleaned Data 

https://developers.google.com/machine-learning/glossary/#classification_model
https://developers.google.com/machine-learning/glossary/#classification_model
https://developers.google.com/machine-learning/glossary/#precision
https://developers.google.com/machine-learning/glossary/#recall
https://developers.google.com/machine-learning/glossary/#positive_class
https://developers.google.com/machine-learning/glossary/#positive_class
https://futureproof.records.nsw.gov.au/wp-content/uploads/2018/03/Multinomial-Naive-Bayes.png


Features – 5,000 

Best Accuracy: 65.4% 

F1 Score: 0.624 

Training Time: 109 ms 

Features – 5,000 

Best Accuracy: 69% 

F1 Score: 0.648 

Training Time: 108 ms 

Features – 10,000 

Accuracy: 64% 

F1 Score:0.622 

Training Time: 111 ms 

Features – 10,000 

Accuracy: 68% 

F1 Score: 0.638 

Training Time: 109 ms 

Multi-Layer Perceptron 

 

  

Pre Data Cleaning Cleaned Data 

Features – 5,000, 

Accuracy: 77% 

F1 Score: 0.767 

Training Time: 2 min 23s 

Features – 5,000 

Accuracy: 82.7% 

F1 Score: 0.812 

Training Time: 2 min 43s 

Features – 10,000 Features – 10,000 

https://futureproof.records.nsw.gov.au/wp-content/uploads/2018/03/Multi-Layer-Perceptron.png


Accuracy: 78% 

F1 Score: 0.777 

Training Time: 3 min 28s 

Accuracy: 84% 

F1 Score: 0.835 

Training Time: 4 min 02s 

 Key Description 

F1 Score[2]: is a measure of the models accuracy – It considers both 

the precision p and the recall r of the test to compute the score 

 

Results 

The pilot results have given us some pleasing statistics with a maximum of 84% 

successful hit rate using the Multi-layer Perceptron algorithm. The pilot gave us 

the opportunity to compare two algorithms and assess how both un-cleaned and 

cleaned data performed with those algorithms. The results demonstrate that this 

technology is capable of assisting with the classification and disposal of 

unclassified unstructured data. 

Discussions 
The following points provide considerations, limitations and the possible 
anticipation of the use of machine learning for records management: 

• Any error made on the training data during sentencing will only increase 

in the model over time. This would also apply to any intentional bias 

created in the training data. 

• The need for a large training set of classified data to achieve results over 

the test data. 

• Using cloud services and understanding all the terms of services before 

using them is very important especially around issues of personal 

privacy of individuals and legal ownership of the data being stored. 

• The corpus used was manually sentenced at folder level with only a 

sampling of individual documents whereas the model was able to 

sentence directly as document level in a much timelier manner. 

• Having enough available computational volume on local machines to 

process the model. 

• Exceptional results from only around 100 lines of code, having enough 

expertise and using the correct algorithm. 

• Could we build a GA28 Machine Learning Black Box to help agencies 

manage administrative records? 

• Do we know what the sentencing success rate was in the paper paradigm 

with manual human sentencing and how would that compare with the 

machine learning technologies? 
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