

Case Study – Internal Pilot – Machine Learning and

Records Management

March 20, 2018

Motivation

In 2017 State Archives NSW’s Digital Archives team began investigating the

application of machine learning to records management. The first deliverable of

this project was a research paper published on the FutureProof blog that

explored the state of art (what the technology is capable of) and state of play

(how it is being used in records management). One of the key findings of this

report was that, although machine learning has potential to improve the

classification and disposal of digital records, there has been very little adoption

of the technology, particularly in New South Wales. In order to promote uptake

we committed to a series of internal and external pilots to further explore and

showcase machine learning for records management.

This case study documents an internal pilot that the Digital Archives team

conducted in November and December 2017. The goal of this pilot was to apply

off-the-shelf machine learning software to the problem of classifying a corpus of

unstructured data against a retention and disposal authority. The results of this

pilot were shared at the December 2017 Records Managers Forum.

Preliminary set-up

One of the constraints of the internal pilot was that we had limited resources: no

budget and (very fortunately) an ICT graduate placement that had recent

university experience in machine learning. So in identifying suitable technologies

to use in the pilot we looked for low cost, off-the-shelf solutions. We quickly

settled on scikit-learn: a free and open source machine-learning library for the

Python programming language. This is a simple and accessible set of tools that

includes pre-built classifiers and algorithms. It was fortunate that we had a

machine with a big CPU, copious RAM, and SSDs to run the model on.

Method

Objective

The goal of the internal pilot was to test machine learning algorithms on a

corpus of records that we had previously manually sentenced against a disposal

https://futureproof.records.nsw.gov.au/machine-learning-and-records-management/
https://en.wikipedia.org/wiki/Scikit-learn#Overview

authority. With what level of accuracy could we automatically match the corpus

against the same disposal classes?

Corpus

The records that were chosen for the internal pilot had been transferred to the

Digital State Archive in 2016 by a central government department. This corpus

was unusual in that it contained a complete corporate folder structure extracted

from Objective. The full corpus comprises 30 GB of data, in 7,561 folders,

containing 42,653 files. At the point of transfer, no disposal rules had been

applied to the files (ordinarily we require that only records required as State

Archives are transferred to our custody). In a joint effort with the department

we manually sentenced the corpus (at a folder level) against the General

Retention and Disposal Authority Administrative Records (GA28). The result of

this manual appraisal of the folders was a total of 12,369 files required as State

archives.

The following options were considered for the internal pilot:

• to apply all “Required as State archive” classes from GA28 (75 in total).

Folders that didn’t fit these classes would be unclassified

• to apply the subset of “Required as State archive” classes that had been

manually identified in the corpus (23 in total). Folders that didn’t fit

these classes would be excluded from the corpus

• to apply all of the GA28 classes (686 in total). To do a complete test of all

folders

• to pre-treat the corpus by removing all folders which would be covered by

NAP (Normal Administrative Practice) E.g. duplicates or non-official/

private records

The decision was made to pre-treat the corpus and remove all folders which

would be covered by NAP (Normal Administrative Procedures) and to take the

subset of 12,369 files that were identified as being “Required as State archives”

which used only 23 classes of GA 28. Further preparation of the subset involved

assigning the classification from the folder level at the level of the individual

files. This was done manually.

Summary table

Break down of the corpus:

 Data set Number of file contained

Complete corpus 42653

NAP (Normal Administrative Procedures) 25643

Corporate file plan 17307

Required as State Archives 12369

Required as State Archives and formats that could be text extracted

– i.e. the usable sample set
8784

Text Extraction and Classification steps

1. Text Extraction

To be usable, the documents chosen for analysis need to be easily text

extractable. This was to ensure performance and ease of conducting further text

manipulation later in the project. Only 8,784 files of the 12,369 files which were

classified as State archives were selected for use because their file types allowed

simple text extraction.

After sorting the sample set, a Python program using various libraries was

developed to extract text from the following file types: PDF, DOCX and DOC

files.

The text that was extracted from documents was then placed within a single .csv

file. The .csv file was divided into three columns: the file name (unique

identifier), classification (GA 28 class), and lastly the text extract.

2. Data cleaning

We took a very basic approach to data cleansing. The following concepts were

utilised: remove document formatting, remove stop words, remove documents

that are not required, and convert all letters to lower case.

3. Text Vectorisation and Feature Extraction

Text vectorisation is the process of turning text into numerical feature vectors. A

feature is unique quality that is being observed within a dataset and using these

qualities we form an n-dimensional vector, which is used to represent each

document. Text Vectorisation is necessary because machine learning and deep

learning algorithms can’t work directly with text. It is essential to convert text

into numerical values that the machine learning algorithm can understand and

work with.

The methodology we used for text Vectorisation is termed the Bag-of-Words

approach. This is a simple model that disregards the placements of words within

documents but focuses on the frequency instead. This is done by considering

each unique word as a feature. We then use this approach to represent any

document as a representation of a fixed length of unique words known as the

vocabulary of features. Each position for the unique word is filled by the count of

the particular word appearing in that document, thus creating a document-term

matrix which is a mathematical matrix that describes the frequency of terms

that occur in a collection of documents

Example[1]

Suppose we have the vocabulary that includes the following:

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://futureproof.records.nsw.gov.au/case-study-internal-pilot-machine-learning-and-records-management/#_ftn2

Brown, dog, fox, jumped, lazy, over, quick, the, zebra

Then we are given an input document:

the quick brown fox jumped over the lazy dog

 Brown Dog Fox Jumped Lazy Over Quick The Zebra

Document 1 1 1 1 1 1 1 1 2 0

This document term matrix shown above is the numerical representation of the

given input document.

4. Term Frequency Inverse Document Frequency (TF-IDF)

Having a document term matrix that uses counts is a good representation but a

basic one. One of the biggest issues is that reoccurring words like “are” will have

large count values that are not meaningful to the vector representations of

documents. TF-IDF is an alternate method of calculating document feature

values for a vector representation. TF-IDF works by calculating the term

frequency (frequency of a particular word within a document) and then

multiplying it by the Inverse document frequency (this helps decrease the rating

of words that appear too frequently in the document set and favours

unique/unusual words).

Therefore, once we had created a vocabulary and built the document term

matrix (DTM) we applied the TF-IDF approach onto the DTM to increase the

weighting of words that are unique to the documents themselves.

Example – Application on a Document-Term Matrix

Let’s say we have a document-term matrix with two documents in it and we

want to put TF-IDF weighting on it.

 Brown Dog Fox Jumped Lazy Over Quick The Zebra

Doc 1 1 1 1 1 1 1 1 2 0

Doc 2 0 1 0 1 1 1 0 2 1

TF-IDF = Term Frequency * Inverse Document Frequency

Term Frequency = the number of times the word appears within a document.

Inverse Document Frequency = Log (Total number of documents / Number of

documents having the particular word)

Term Frequency Inverse Document

Frequency

TF-IDF

Doc 1 Doc 2 Doc 1 Doc 2

Brown 1 0 Log(2/1) = Log(2) Log(2) 0

Dog 1 1 Log(2/2) = Log(0) = 0 0 0

Fox 1 0 Log(2/1) = Log(2) Log(2) 0

Jumped 1 1 Log(2/2) = Log(0) = 0 0 0

Lazy 1 1 Log(2/2) = Log(0) = 0 0 0

Over 1 1 Log(2/2) = Log(0) = 0 0 0

Quick 1 0 Log(2/1) = Log(2) Log(2) 0

The 2 2 Log(2/2) = Log(0) = 0 0 0

Zebra 0 1 Log(2/1) = Log(2) 0 Log(2)

After applying TF-IDF weighting it is clearly visible that words that are unique

and provide greater meaning having higher weightings compared to those that

don’t.

5. Training and Test Split

The pilot used the standard ratio 75% training data to 25% testing data in its

approach. To begin with we took 75% of the pre-classified “Required as State

archive” content and used this data to train the algorithm to build the model.

Once the training had been completed the same algorithm and model was used

to process the 25% test set. This allows us to assess how accurately the model

performs and determine a percentage of successful prediction. Our results are

shown below.

6. Machine learning algorithm overview

We used two machine learning algorithms to build our model: multinomial Naïve

Bayes and the multi-layer perceptron. These algorithms were chosen as they are

widely used for this type of application

• Multinomial Naïve Bayes

Multinomial Naïve Bayes is part of a family of simplistic probability based

classifiers. The classifier is based on the Bayes theorem that involves the use of

strong independent assumptions between features.

• Multi-Layer Perceptron

Multi-layer perceptron is a supervised learning algorithm that can learn as a

non-linear function approximator for either classification or regression.

Statistical Analysis

To demonstrate the results of the internal pilot we have created a confusion

matrix and summary result tables to display the comparison of the two

algorithms used.

Confusion Matrix

A confusion matrix is a table that summarizes how successfully a classification

model’s predictions were i.e. the correlation between the actual label and the

model’s classification. One axis of a confusion matrix is the label that the model

predicted, and the other axis is the actual label. The size of the table on both

axes represents the number of classes. Note: The confusion matrices presented

below are representative but aren’t the exact ones used to determine the

results.

Confusion matrices contain sufficient information to calculate a variety of

performance metrics, including precision and recall. Precision identifies the

frequency with which a model was correct when predicting the positive

class and recall answers the following question: out of all the possible positive

labels, how many did the model correctly identify?

Multinomial Naïve Bayes

Pre Data Cleaning Cleaned Data

https://developers.google.com/machine-learning/glossary/#classification_model
https://developers.google.com/machine-learning/glossary/#classification_model
https://developers.google.com/machine-learning/glossary/#precision
https://developers.google.com/machine-learning/glossary/#recall
https://developers.google.com/machine-learning/glossary/#positive_class
https://developers.google.com/machine-learning/glossary/#positive_class
https://futureproof.records.nsw.gov.au/wp-content/uploads/2018/03/Multinomial-Naive-Bayes.png

Features – 5,000

Best Accuracy: 65.4%

F1 Score: 0.624

Training Time: 109 ms

Features – 5,000

Best Accuracy: 69%

F1 Score: 0.648

Training Time: 108 ms

Features – 10,000

Accuracy: 64%

F1 Score:0.622

Training Time: 111 ms

Features – 10,000

Accuracy: 68%

F1 Score: 0.638

Training Time: 109 ms

Multi-Layer Perceptron

Pre Data Cleaning Cleaned Data

Features – 5,000,

Accuracy: 77%

F1 Score: 0.767

Training Time: 2 min 23s

Features – 5,000

Accuracy: 82.7%

F1 Score: 0.812

Training Time: 2 min 43s

Features – 10,000 Features – 10,000

https://futureproof.records.nsw.gov.au/wp-content/uploads/2018/03/Multi-Layer-Perceptron.png

Accuracy: 78%

F1 Score: 0.777

Training Time: 3 min 28s

Accuracy: 84%

F1 Score: 0.835

Training Time: 4 min 02s

 Key Description

F1 Score[2]: is a measure of the models accuracy – It considers both

the precision p and the recall r of the test to compute the score

Results

The pilot results have given us some pleasing statistics with a maximum of 84%

successful hit rate using the Multi-layer Perceptron algorithm. The pilot gave us

the opportunity to compare two algorithms and assess how both un-cleaned and

cleaned data performed with those algorithms. The results demonstrate that this

technology is capable of assisting with the classification and disposal of

unclassified unstructured data.

Discussions
The following points provide considerations, limitations and the possible
anticipation of the use of machine learning for records management:

• Any error made on the training data during sentencing will only increase

in the model over time. This would also apply to any intentional bias

created in the training data.

• The need for a large training set of classified data to achieve results over

the test data.

• Using cloud services and understanding all the terms of services before

using them is very important especially around issues of personal

privacy of individuals and legal ownership of the data being stored.

• The corpus used was manually sentenced at folder level with only a

sampling of individual documents whereas the model was able to

sentence directly as document level in a much timelier manner.

• Having enough available computational volume on local machines to

process the model.

• Exceptional results from only around 100 lines of code, having enough

expertise and using the correct algorithm.

• Could we build a GA28 Machine Learning Black Box to help agencies

manage administrative records?

• Do we know what the sentencing success rate was in the paper paradigm

with manual human sentencing and how would that compare with the

machine learning technologies?

Acknowledgements

https://futureproof.records.nsw.gov.au/case-study-internal-pilot-machine-learning-and-records-management/#_ftn3
https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)

I would like to thank and acknowledge the work of Malay Sharma (ICT Graduate)

who was on a rotational placement just at the right time.

[1] https://stackoverflow.com/questions/17053459/how-to-transform-a-text-to-

vector (Accessed on 1/12/2017)

[2] https://adamyedidia.files.wordpress.com/2014/11/f_score.pdf (Accessed on

5/12/2017)

Author: Glen Humphries

https://futureproof.records.nsw.gov.au/case-study-internal-pilot-machine-learning-and-records-management/#_ftnref2
https://stackoverflow.com/questions/17053459/how-to-transform-a-text-to-vector
https://stackoverflow.com/questions/17053459/how-to-transform-a-text-to-vector
https://futureproof.records.nsw.gov.au/case-study-internal-pilot-machine-learning-and-records-management/#_ftnref3
https://adamyedidia.files.wordpress.com/2014/11/f_score.pdf

